A long state vector kalman filter for speech enhancement

نویسندگان

  • Stephen So
  • Kuldip K. Paliwal
چکیده

In this paper, we investigate a long state vector Kalman filter for the enhancement of speech that has been corrupted by white and coloured noise. It has been reported in previous studies that a vector Kalman filter achieves better enhancement than the scalar Kalman filter and it is expected that by increasing the state vector length, one may improve the enhancement performance even further. However, any enhancement improvement that may result from an increase in state vector length is constrained by the typical use of short, non-overlapped speech frames, as the autocorrelation coefficient estimates tend to become less reliable at higher lags. We propose to overcome this problem by incorporating an analysis-modificationsynthesis framework, where long, overlapped frames are used instead. Our enhancement experiments based on the NOIZEUS corpus show that the proposed long state vector Kalman filter achieves higher mean SNR and PESQ scores than the scalar and short state vector Kalman filter, therefore fulfilling the notion that a longer state vector can lead to better enhancement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computationally Efficien Enhancement Based on Bloc Signal in State Space and Ve

A computationally efficient speech enhancement method is proposed. Reduction of computations is achieved due to derived properties of block model of autoregressive (AR) signal. Decreasing of filtering error in comparison with traditional Kalman filter is shown. The problem of estimation of speech AR parameters is also considered. A two-phase computationally efficient estimation procedure, based...

متن کامل

An Effective Attack-Resilient Kalman Filter-Based Approach for Dynamic State Estimation of Synchronous Machine

Kalman filtering has been widely considered for dynamic state estimation in smart grids. Despite its unique merits, the Kalman Filter (KF)-based dynamic state estimation can be undesirably influenced by cyber adversarial attacks that can potentially be launched against the communication links in the Cyber-Physical System (CPS). To enhance the security of KF-based state estimation, in this paper...

متن کامل

Inter-frame modeling of DFT trajectories of speech and noise for speech enhancement using Kalman filters

In this paper a time-frequency estimator for enhancement of noisy speech signals in the DFT domain is introduced. This estimator is based on modeling the time-varying correlation of the temporal trajectories of the short time (ST) DFT components of the noisy speech signal using autoregressive (AR) models. The timevarying trajectory of the DFT components of speech in each channel is modeled by a...

متن کامل

Rotated Unscented Kalman Filter for Two State Nonlinear Systems

In the several past years, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) havebecame basic algorithm for state-variables and parameters estimation of discrete nonlinear systems.The UKF has consistently outperformed for estimation. Sometimes least estimation error doesn't yieldwith UKF for the most nonlinear systems. In this paper, we use a new approach for a two variablestate no...

متن کامل

Single Channel Adaptive Kalman Filtering – Based Speech Enhancement Algorithm

This paper deals with the problem of speech enhancement when a corrupted speech signal with an additive Gaussian white noise is the only information available for processing. Speech enhancement aims to improve speech quality by using various algorithms. The objective of enhancement is improvement in intelligibility and/or overall perceptual quality of degraded speech signal using audio signal p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008